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Interaction of foreign macroparticles in a cholesteric liquid crystal
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We calculate the interaction energy between spherical macroparticles immersed in a cholesteric liquid crystal
due to the elastic deformation of the director field. We assume weak anchoring on the surface of the macro-
particles and obtain the expression of the interaction energy that is valid for particle radius and interparticle
distance sufficiently smaller than the cholesteric pitch. The resultant form of the interaction energy is more
complex than that in a nematic liquid crystal. One of the characteristics is its dependence on the particle
position as well as the interparticle distance, which arises from the intrinsic structure of a cholesteric liquid
crystal, i.e., the absence of translational symmetry due to helical periodicity and local nematic ordering whose
orientation depends on the position.
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Colloidal suspensiondl, 2] of solid or liquid particles dis- roparticles is influenced by the presence of an intrinsic struc-
persed in liquid-crystal hosts constitute a new class of comture of liquid crystals. The purpose of the present paper is,
posite materials with unique physical propertj@s-7], and therefore, to extend our previous formulatifité| to other
the physics therein has attracted boom of interest in receniguid-crystal phases with a lower symmetry, thereby with
years. Depending on the relative magnitude of the partidénherent characteristic length scales. There have already been
size and the anchoring extrapolation length at the surface dfeveral theoretical attempts to study the interaction between
the particle, there appear a variety of superstructures such &acroparticles in smectic liquid crystals due to the smectic
linear chains[4,8—10, anisotropic cluster§3,11-13, and layer displacement induced by the macroparti¢@s—24.
periodic latticed14—16 of suspended particles. In addition To our knowledge, however, no theoretical studies have been
to the ordinary colloidal forces, particles immersed in liquid focused on cholesteric liquid crystals as a host fluid, with
crystals can interact with each other through the orientationahich we will concern ourselves in this paper. In the case of
Frank elasticityf4,14,17—2Q. The elastic interaction consists cholesteric liquid crystals, the twist pitch serves as an addi-
in the fact that the particle distorts the adjacent director fieldional characteristic length and it is, therefore, of an interest
whose effects extend far and exert a long-range orientation&p €xamine how the existence of this new length scale to-
stress on surrounding particles. Since the form of superstru@ether with a helical structure would qualitatively as well as
tures made by colloidal particles in a liquid crystal is cru-quantitatively modify the interparticle interaction law found
cially influenced by this elasticity-mediated interaction, thefor the nematic suspensions.
understanding of such an interaction is quite important to \We begin with writing the free energy due to the elastic
predict and control the properties and behaviors of liquicdeformation of the director field. The bulk elastic energy of

crystal colloids. a cholesteric liquid crystal can be described 25
In previous paperfl4,17-21, the interaction energy be- 1

tween macroparticles has been considered in the nematic :_f 2 VX 2

liquid-crystal host and one of the present auth@&3.L.) has Fo=3 | d{Ki(V-m"+Ka(n-VXn+q)

developed a theoretical scherfied] that can be applied to

general cases of macroparticles with arbitrary shape and an-
choring orientation on the surface as long as the anchorin i i
strength is weak. Since a nematic phase possesses the high¥8€e K1,Kz, and K are the elastic constants associated

symmetry of all the liquid-crystal phases and the Frank elas/!th SPlay, twist, and bend deformations, respectively, and

ticity of a nematic liquid crystal does not have its own char-%o is the wave number characterizing the cholesteric pitch.

acteristic length scale, the resulting interparticle interaction 1 N€ interaction energy between a macroparticle and a

depends only on the particle size and the anchoring extrap&holesteric liquid crystal can be obtained from the known

lation length if it is finite. director distribution on the macroparticle surface and given
As a host liquid crystal, one can choose other types obY

liquid crystals with lower symmetries such as smectics or

cholesterics. The wide variety of liquid-crystal phases will be Fo= 2 3§ d2SW9)[1(s) - n(9)]2. 2)

of great use and importance because we can seek a wider P Ja,

possibility of creating different superstructures of colloidal

suspension. Moreover, it is interesting also from a fundamenHerep is the index labeling the particles and the surface of

tal point of view to know how the interaction between mac-the macroparticlgp is denoted by(},. The integral is taken

+K3(nXVxn)?}, (1)
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over ), and d’S is the surface element. The anchoring ticles) so that the director field is only slightly deformed by
strength is given byV(s) and ¥(s) is the unit normal to the the particles from its ground state,

surface at the poirg. In the case of homeotropic anchoring,
W(s)<0 and vice versa for planar anchoring. We restrict
ourselves to the case of the weak anchoriy|¢,/K;<1, where we take the pitch axis along thexis. The director
wherer, is the characteristic dimension of the macropar-field in a general case can be written as

No(r)=(c0sqgyz,singez,0), 3)

n(r)={coggoz+u(r)]cosv(r),siq goz+u(r)]cosv(r),sinv(r)}, (4)

where we have introduced the deformation fielgt) and  being a positive integer. Therefore the treatment above is

v(r) characterizing the deviation from the ground state.  justified for particles whose radius is sufficiently smaller
Here we assume that the director figidr) is defined than the cholesteric pitch.

throughout the system, even within macroparticles, and con- The distortion profile that minimizes the elastic energy in

tinuous. Such an assumption is justified in the case of wealf€ presence of macroparticles can be determined through the

anchoring and resultant small deformation of the directoconditions,

field. Then we can employ the Fourier representation for the S(Fy+Fo S(Fp+Fy)
distortion field, which is defined as,=fdre '"*u(r) and 5 > = 5 > =0. 7)
ve=Jdre "y (r). Ug Uq

We first substitute Eq(4) into the bulk energy1). Inthe  However, in contrast to the case of nematic liquid crystals
case of smallu and v, we have to retain only up to the [14], the presence of the off-diagonal coupling in the bulk
second order terms in andv, which can be written as energy, the last two terms in E¢), makes the calculation

quite difficult. Therefore we naively assume here that these

1 ) 5 2 ) off-diagonal terms can be neglected and will discuss below
FbZEKf {a7ugu_g+ (g +ag)vgy g+ doug (idy+dy) in what condition this assumption can be justified. Under this
a a_ssumption, the calculation is greatly simplified and &.
Xv —q—qoi"_ (igx— Qy)v —q+qoﬂ}v 6) yields
wherefqz(27r)‘3qu and we have employed the one con- uqz% E {—i(qx—iqy)zexm(q+ 2q02) “Tp]
S o . 2Kqg“ p
stant approximatiorK; =K. z denotes the unit vector along
the z direction. +i(g,+igy)2exdi(g—2qe2) - 8
In dealing with the surface energy, we make a gradient (G+iay)"exil1(G2002) - p), ®
expansion of the director fielt(s) around the center of y
gravity of the macroparticl@, which we will denote byr, . SN 2 {—(Qot+a)(ax—idy)
We also restrict ourselves to the case of spherical particles K(q°+ag) P
with equal radiusR, and constant anchoring eneryy, al- : A B .
though our approach can be easily extended to particles with X exiLi(q+oz) - Fp] + (o~ dz) (Ax Fidy)
an arbitrary shapgl4]. Then the resultant form of the sur- Xexp[i(q—qoi)mp]}. )

face energy is
After substituting Eqs(8) and(9) into the total free energy

1 . _ _ N F=F,+Fs, we can obtain the interaction energy between
Fs=§72 f[{—|(qx—|qy)2exq|(q+ 2002 1p] macroparticles due to the elastic deformation of the director
p-d field asF=Z%,-,U,, with the pairwise interactiod
(Gt iay)2exdi (02062 - Tpljuq+2{~ (do+q,)  PeN
2
. . ~ . J
X(gx—idy)exfdi(q+doez) - rp]+(do—dz)(dx+idy) Upr =g [ —c0929y2)V+Re exp§4iq0Rz)( i—
xexdi(gq— qoi) : rp]}vq]y (6)
a\4 1 _ 5 C9\?
where we have retained only linear order terms emdv as Tl +4Re expigez) Vi| do—i—-
in our previous study14]. The only parameter characteriz- PP
ing the spherical particle i$E(4/15)7ngW. We note that as _ _ 2 ) 22\ ] e ldlrpp’
in the previous study14] we have retained only up to sec- +exp(2iqeR,) la"‘ ay Qot S| (— |
ond order terms in the gradients and higher order terms will 9z Mopr
result in the corrections of the order ofjdRy)%" with n (10
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Here r o =(X,y,z)=r,—r, denotes the distance between 87K
two particles and p, =|rppr|. R,=(1/2)(rp+r,/) -z and Re VA
implies taking the real part of a complex expression. We
have also employed the abbreviatio$= 9%/ 9x>+ 9%/ dy?
andVi=(V?)2 60000

Several remarks are in order. First of all, when deriving 40000
Eqg. (10), we have neglected the off-diagonal coupling terms
in the bulk elastic energy as mentioned before. For vanish-
ingly small qo, these off-diagonal terms give a contribution 0
to the distortion energy of the orde)rqu/Krpp,“, while
Upp ~ YK pp° from Eg. (10). Therefore the off-diagonal
terms can be safely neglected and the resultant formula fo-40000
the interaction energfl0) holds wherggr ,» <1, that is, the
interparticle distance is sufficiently smaller than the choles-
teric pitch. FIG. 1. The pairwise interaction energy, . in the case of

One might argue that the self-energy, the distortion energyerpendicular to the axis andr,=0. We show only the region
due to one particle, must be properly taken into account begith gor, >0.3 because,,, diverges ar, =0.
cause of the absence of translational symmetry due to the
cholesteric structure and the resultant possibility of the detocal orientation of cholesteric liquid crystals. In Fig. 1 we
pendence of self-energy on particle position. We can showplot the interaction energil1l) with R,= 0 (the local nematic
however, that in the case of spherical particle the self energgrientation is along th& axis). It is clear from Fig. 1 that the
is independent of the particle position and that such a treainteraction is repulsive when two particles lie along or per-
ment is not necessary. It can be simply explained by a sympendicular to the local nematic orientation and attractive in
metry argument as follows: the distortion figidr) with one  the oblique direction. The repulsive interaction is stronger
particle located at, can be exactly mapped onto the distor- parallel than perpendicular to the local nematic orientation.
tion field n’(r) with the particle at another poirrgﬁJ by a  As expected, the interaction closely resembles a quadrupole
rotation of the laboratory frame by an appropriate angle afteone in nematics in the case of weak anchoring and it can be
a translation byr,—r,. Such an argument, however, does easily shown that we recover the interaction energy in a nem-
not apply when particles have a lower symmetry or wheratic liquid crystal[14] by taking the limit ofqe—0.
two or more particles are present and not aligned in the di- When two particles lie along the cholesteric pitch axis
rection of the cholesteric pitchz(direction. The inapplica- (rpp,||2), we obtain, from a straightforward manipulation of
bility of the symmetry argument above reveals itself in thegq. (10),
dependence dfj,,; on RZ=(1/2)(rp+rp,)-2, a detailed dis- )
cussion on which will be given below. Y _ 2

Since the resultant form of the interaction enet@g) is UPP':&TKzs[_24 cos 2oz + 16819073+ 3 qp| 2+ 0222)
somewhat complicated, we restrict the discussions below to

80000

20000

-20000

the simple cases where two particles lie perpendicular to or X (2 c0sqpz+qgzsingez) | (12
along the cholesteric pitch axier z axis). In the former case A
(rpp’J— 2), the interaction energy is given by for Z=Tpp -z>0. Equation(12) is plotted as a function of
in Fig. 2. Forgqoz<1, the interaction is repulsive, and the
3y?
Upp =———-{9+20c0os2qoR,~ #) +35c0s 4qoR,~ ¢) 1
8mKr?
08
+O(ldor. D}, (1D
06
where RZ=(1/2)(rp+rp,)-2 as defined before, and, %[ 04l
= xZ+y2 Sincer,, is perpendicular to the axis, R, is °°>g:
equal to thez coordinate of the two particles amgd=|r,|. o 0271
The azimuthal angle is defined asp=tan (y/x). 0
One of the most characteristic properties of the interaction \\/
energy(11) is that it depends not only on the relative dis- 02
tancer,, but also on the positioRR, of the two particles. 04 . . . . .
This reflects the breakdown of the translational symmetry in 7 1 > 3 4 5 5

the presence of two particles due to the cholesteric helical
structures as noted above. Notice also thgiR,— ¢ repre-
sents the angle betweep, and the local orientation of lig- FIG. 2. The pairwise interaction enerdy,, as a function of
uid crystals[see Eq.(3)]. Therefore the interaction energy z=rpp,-2when rop is parallel to thez axis. U, goes to infinity
depends on how two particles are placed with respect to theith z—0.

40z
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energy is proportional ta~°. From Fig. 1 we also find that teric liquid crystal by extending our approach formerly ap-
Eq. (12) has its minimum atjyz=2.85. Of course we cannot plied to the case of nematic liquid crystals. In the case of
conclude that the interaction energy has its minimum thergveak surface anchoring and small interparticle distance com-
because the validity of Eq12) is guaranteed only fogoz  pared to the cholesteric pitch, we have obtained an analytic
<1. However, this result, together with the oscillating natureform of the interaction energy in terms of the position of two
of Eq. (12), might be considered to reflect directly the peri- particles. The interaction energy has more complex form
odic helical structure of cholesteric IIqUId CryStalS. Furtherthan those for nematics or smectics in previous theoretical
quantitative analysis that can be appliedggz>1 will be  stydies and reflects the absence of translational symmetry
necessary to determine whether this potential minimum regg|ated to the helical periodicity and local nematic ordering
ally exists and to elucidate how the interaction will be influ-;, -holesteric liquid crystals. We, therefore, believe that cho-

enced by the presence of periodic structures. We note thglgseric liquid crystals will provide an interesting example as

although there have been several theoretical studies to evaly-,, o« fuid of colloidal systems and we encourage experi-

ate_th(_e intergcti_on energy between in_clusio_ns imme_rsed 'Thents to reveal how the force between particles in choles-
periodic media I|k_e smect|({92—24],lthe|rstartlng pointisa teric liquid crystals is influenced by the cholesteric struc-
more coarse-grained free energy in terms of the layer dis-

placement and the resultant formula of the interaction energt res. Possible future direction of the present study is to

does not reflect the layer structure of the metia example xtend our calculations to the case of particles with lower
it does not depend on the layer spacings " symmetries or to incorporate the off-diagonal coupling of the

In conclusion, we have evaluated the interaction energfVist and the umbrella modes properly to argue the interac-
between two spherical macroparticles immersed in a choledlon energy for large interparticle distance.
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